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Abstract

The problem of an unsteady squeezing flow of fluid between two parallel plates

under the influence of an inclined magnetic field is considered and analyzed. The

inclination angle of the applied magnetic field varies from 00 to 900. Viscous dissi-

pation, Joule heating and the stretching velocity of the lower plate with suction or

injection are also taken into account. The transformed nonlinear governing equa-

tions are solved numerically by a fourth order Runge-Kutta scheme coupled with

the shooting method. Impact of the squeeze number, the magnetic parameter, the

magnetic inclination angle, the lower-plate stretching parameter, the lower-plate

suction/injection parameter and Eckert number on the velocity and temperature

are discussed, respectively. It is found that the inclination angle of the applied

magnetic field also plays an important role in the velocity and heat transfer in

squeezing flows. The influence of increasing the strength of the magnetic field on

velocity and temperature can also be obtained approximately by varying the angle

of inclination of the magnetic field used.
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Chapter 1

Introduction

A substance in the gas or liquid phase is called the fluid. Fluid flow has vari-

ous aspects, for example, steady and unsteady, compressible and incompressible,

viscous and inviscid, rotational and irrotational, uniform and non-uniform etc,

Meir [1]. Viscous fluid between parallel plates generates a squeezing movement.

The squeezing movement has multiple industrial applications, such as food preser-

vation, injecting design, compression, squeezed films, cooling liquid etc, Stefan [2].

Analysis of the momentum equation is very crucial in such applications and pro-

cesses of fluid flow. He provided the basic and pioneering research on squeezing

movement under lubricating oil assumption. His admirable work opened new doors

to explore the squeezing flow. The earlier squeezing movement studies were based

on Reynolds equation which was shown by Jackson [3] and Usha and Sridha-

ran [4] to be insufficient for some cases. In a previous research over the several

decades, Reynolds [5] studied the squeezing movement between elliptic plates while

Archibald [6] examined rectangular plates with the same problem. Mahmood et

al. [7] described the squeezed flow analysis for heat transfer on a porous sur-

face. Hayat et al. [8] investigated the affect of chemical response and thermally

conductive conditions on squeezing movement. The squeezing effect of combined

mass and heat transfer behavior of a viscous fluid flow between parallel plates

was demonstrated by Mustafa et al. [9]. Ahmad et al. [10] recently analyzed the

1
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impact of velocity, thermal and solutal slips effects on squeezed fluid transport fea-

tures. Hayat and Hina [11] discussed the affect on Williamson fluid flow through

mass and heat transfer with flexible walls. Farooq et al. [12] also investigated

the combined properties of convection of Sutterby fluid squeezing flow in squeezed

tube. Consequently some other researchers studied the thermodynamic effects of

squeezed flow such as Khaled and Vafai [13] discussed the effect of heat trans-

fer for the squeezed flow of viscous fluid on a sensor surface. Ganji et al. [14]

discussed the analytical solution of squeezed flow with magnetic effects between

two porous plates and compared the results of suction and blowing cases using

the Homotopy fluctuation method. Islam et al. [15] investigated steady axisym-

metric squeezing fluid flow in a porous channel. Abd-El Aziz [16] considered an

unsteady stretching sheet to be the result of time-dependent chemical process of

a viscous fluid flow. Jackson [3] considered and analyzed a theoretical analysis,

using an iterative method of squeezing Newtonian liquid flow produced by the

unsteady movement of a disk over a plane surface. Acharya et al. [17] investigated

the squeezing movement of Cu-water and Cu-kerosene nanofluids flow between

two parallel plates. Heat and mass transfer aspects of squeezing a micropolar fluid

within a porous medium were examined by Fakour et al. [18] using the least square

method. From their analysis it is observed that with the rising values of Reynolds

number, the thickness of the velocity boundary layer decreases. Due to the nor-

mal movement of the plates, Siddiqui et al. [19] discussed the role of magnetic

field in the squeezing movement between parallel plates. The porous medium is

the material which consists pores filled by fluid. The potential to allow fluids to

pass through porous surface is defined as permeability represented by k. Darcy ’s

law presented by Henry Darcy denotes the flow through porous medium (1803 –

1858). The purpose of this law is the flowing of water through the beds and sands.

The assumptions in the porous medium have become more attractive when Darcy

law began to be modified [20].

To maintain flow and heat transfer under the application of magnetic fields has

important significance for multiple areas of physics, especially nuclear reactors

with MHD generators, geothermal extractions, plasma studies, aeronautical and
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aerodynamic boundary layer control, etc. [21–35]. Ansari et al. [36] described the

affects of a magnetic field on an irregular hydromagnetic squeezing movement be-

tween two parallel plates of an unsteady viscous fluid. Domairry and Aziz [37]

studied the squeezing movement between parallel disks under the influence of a

magnetic field. Haq et al. [38] investigated the squeezed movement of nanofluid

over a sensor surface using MHD. Hayat et al. [39] used the homotopy analy-

sis to investigatedthe impacts of a magnetic field on the squeezing movement of

couple stress nanofluid flow between two parallel plates. In the presence of ther-

mal radiation and diffusion, Olajuwon et al. [40] performs the study of heat and

mass transfer analysis of second grade MHD fluid. Nadeem et al. [41] explained

the impact of Casson MHD fluid flow past linear stretching sheet in a trans-

verse direction. Hatami et al. [42] explained the effect of magnetic field on the

study of nanofluid heat transfer between parallel plates. Within a rectangular

cavity Rashad et al. [43] examined the free heat transfer flow in the influence of

a uniform inclined magnetic field. Kirubhashankar and Ganesh [44] examined an

unsteadyMHD flow of a Casson fluid in a parallel plate with a chemical reaction

and concluded that an increase in the heat source and Prandtl number reduces

the temperature profiles. The heat and mass transfer properties of gyrotactic mi-

croorganisms suspended in the MHD Casson fluid flow across a vertical rotating

plate or cone maintained in a porous medium were investigated numerically by

Raju and Sandeep [45]. Recently, the impacts of a magnetic field on the squeezing

movement of an unsteady viscous fluid between parallel plates with suction/injec-

tion was analyzed by Su and Yin [46].

The work on the squeezing movement under inclined magnetic fields requires fur-

ther analysis according to the survey of relevant studies we have found. The present

study focused on the flow and convection features of the fluid squeezed among two

parallel plates while the magnetic field is inclined by taking inspiration from the

above mentioned studies. The surface of the lower plate with suction stretches

across the longitudinal direction in the squeezing flow. The resulting governing

equations are numerically solved, the impact of the squeeze parameter, the mag-

netic field parameter, the lower plate stretching parameter, the Darcy number, the
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parameter for lower plate suction/injection, the thermal radiation and the Eckert

number on the velocity and temperature profile.

1.1 Thesis Contribution

In this thesis, a review study of Su and Yin [46] has been presented and then

the flow analysis has been extended in a porous medium. The governing system

of nonlinear PDEs is converted into a model of nonlinear ODEs by using appro-

priate transformation of similarities. Numerical results are obtained for the set

of nonlinear ODEs by using the shooting technique with Runge-Kutta method of

order four (RK4). The influence of various relevant physical parameters has been

discussed using graphs.

1.2 Thesis Outline

This research work is further classified into four main chapters.

Chapter 2 contains some basic definitions, terminologies and governing equations

of the fluid which are needed for the upcoming chapters.

Chapter 3 contains the review work of Su and Yin [46]. By utilizing similarity

transformation we reduce the set of nonlinear PDEs into a set of nonlinear ODEs

and then solve numerically. Numerical results are obtained for the set of nonlinear

ODEs with the help of shooting technique.

Chapter 4 extends the work of Su and Yin [46] by considering in a porous medium.

The transformation of similarities has been utilized for the conversion of PDEs to

ODEs. The transformed nonlinear ODEs are then solved by using the shooting

technique that is most common.

Chapter 5 summarizes the research work and gives the main conclusion arising

from the whole study.

All the references used in this thesis are presented in Bibliography.



Chapter 2

Fundamental Concepts

In the current chapter we discuss the definitions, basic laws and basic concept

related to the fluid dynamics and dimensionless parameters, which will be used in

the upcoming chapters. Moreover, the shooting method is also discussed at the

end of this chapter.

2.1 Some Basic Definitions

2.1.1 Fluid[47]

“Fluids are substances whose molecular structure offers no resistance to external

shear forces: even the smallest force causes deformation of fluid particles. Although

a significant distinction exists between liquids and gases, both types of fluids obey

the same laws of motion.”

2.1.2 Fluid Mechanics[48]

“Fluid mechanics is defined as the science that deals with the behavior of fluids at

rest (fluid statics) or in the motion (fluid dynamics), and the interaction of fluids

with solids or other fluids at the boundaries.”

5
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2.1.3 Fluid Dynamics[49]

“It is the study of the motion of liquids, gases and plasma from one place to

another. Fluid dynamics has a wide range of applications like calculating force

and moments on aircraft, mass flow rate of petroleum passing through pipelines,

prediction of weather, etc.”

2.1.4 Fluid Statics[49]

“Fluid statics is the branch of fluid mechanics which studies the fluid at rest and

also embraces the characteristics of fluid under the condition of rest means statics

condition is known as fluid statics.”

2.1.5 Viscosity[50]

“Viscosity is a quantitative measure of a fluids resistance to flow. More specifically,

it determines the fluid strain rate that is generated by a given applied shear stress.

We can easily move through air, which has very low viscosity.

µ =
τ
∂u
∂y

,

where µ is viscosity coefficient, τ is the shear stress and ∂u
∂y

represent the velocity

gradient or rate of shear strain. Therefore µ has dimension of stress-time: M
LT

.”

2.1.6 Kinematic Viscosity[51]

“It is defined as the ratio between the dynamic viscosity and density of fluid. It

is denoted by the Greek symbol ν, thus mathematically,

ν =
µ

ρ
,

where the dimension of kinematic viscosity is L2

T
.”
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2.2 Classification of Fluids

2.2.1 Ideal Fluid[51]

“A fluid which is incompressible and is having no viscosity(µ = 0), is known as an

ideal fluid. An ideal fluid is only an imaginary fluid as all the fluids, which exist

have some viscosity.”

2.2.2 Real Fluid[51]

“A fluid which possesses viscosity is known as real or viscous fluid having(µ > 0).

All the fluids, in actual practice, are real fluids.”

2.2.3 Newtonian Fluid[51]

“A real fluid, in which shear stress is directly proportional to the rate of shear strain

(or velocity gradient) is known as a Newtonian fluid. Mathematically defined as

τ = µ
∂u

∂y
,

where τ is the shear stress, u denotes the x-component of velocity and ν denotes

dynamic viscosity. The common examples of Newtonian fluids are air, oxygen gas,

alcohol, milk, glycerol and silicone/thin motor oil etc.”

2.2.4 Non-Newtonian Fluid[51]

“A real fluid in which the shear stress is not proportional to the rate of shear strain

(or velocity gradient), is known as a non-Newtonian fluid. Mathematically, it can

be expressed as

τxy ∝
(
du

dy

)m
,m 6= 1.
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τxy = ν

(
du

dy

)
, v = j

(
du

dy

)m−1

where ν denotes the apparent viscosity, m is the index of flow performance and the

constancy index is j. Note that for m= 1, above equation reduces to the Newton’s

law of viscosity. Examples of non-Newtonian fluids are toothpaste, ketchup, starch

suspensions, custard, shampoo, paint and blood etc.”

2.2.5 Ideal Plastic Fluid[51]

“A real fluid, in which shear stress is more than the yield value and shear stress

is proportional to the rate of shear strain (or velocity gradient), is known as an

ideal plastic fluid.”

2.3 Heat Transfer Mechanism and Related Prop-

erties

2.3.1 Conduction[52]

“Due to collision of molecules in the contact form, heat is transferred from one

object to another object this phenomenon is called conduction.

Q = −kA
(

∆T

∆n

)
,

where k denotes the constant of the thermal conductivity and ∆T
∆n

denotes gradient

of temperature respectively.”

2.3.2 Heat Transfer[52]

“Due to temperature difference, energy transfer is called heat transfer. Heat trans-

fer occurs through different mechanisms.”
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2.3.3 Radiation[52]

“In the radiation process, heat is transferred through electromagnetic rays and

waves. It takes place in liquids and gasses. An example of radiation would be

atmosphere, the atmosphere is heated by the radiation of the sun.”

2.3.4 Thermal Conductivity[52]

“It is the property of a substance which measures the ability to transfer heat.

Fourier’s law of conduction which relates the flow rate of heat by conduction to

the temperature gradient is

dQ

dt
= −kAdT

dx
,

where A, k, dQ
dt

and dT
dx

are the area, the thermal conductivity, the temperature

and the rate of heat transfer, respectively. The SI unit of thermal conductivity is

kgm
s3

and the dimension of thermal conductivity is
[
ML
T 3

]
.”

2.3.5 Thermal Diffusivity[52]

“The ratio of the unsteady heat conduction k of a substance to the product of

specific heat capacity Cp and density ρ is called thermal dffusivity.

α =
k

ρCp
,

The unit and dimension of thermal Diffusivity in SI system are m2/s and [LT−1]

respectively.”

2.3.6 Convection[52]

“The process in which fluid is forced by external processes and when thermal

energy expands in gravitational fields by the interaction of buoyancy forces then
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it is called convection. Gases and liquid are the examples of convection fluid.

Mathematically, it is expressed as

q = hA(Ts − T∞),

where h, A, Ts and T∞ expresses the heat transfer coefficient, the area, the tem-

perature of the surface. It is further simplified into following three categories.”

2.4 Types of Flow

2.4.1 Compressible flow[48]

“A compressible flow is the branch of fluid mechanics which varies significant

changes during the fluid flow used in high-speed jet engines, aircraft, rocket mo-

tors also in high-speed usage in a planetary atmosphere, gas pipelines and in

commercial fields.” Mathematically, it is expressed as

ρ(x, y, z, t) 6= c,

2.4.2 Incompressible flow[48]

“A type of fluid flow mechanics in which the density remains constant throughout

during the flow, is called incompressible flow.” Mathematically, it is expressed as

ρ(x, y, z, t) = c,

2.4.3 Laminar flow[48]

“In fluid dynamics, laminar flow occurs when a flow is in parallel layers/closed

channel or at plates with no interruption between the plates. Typically, each
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particle has a definite path and the particles of the path in the fluid do not cross

each other. Rising of smoke is an example of laminar flow.”

2.4.4 Turbulent flow[48]

“When fluid undergoes irregular fluctuations or flowing faster, this type of fluid

(liquid or gas) is called turbulent flow. Turbulent flow which moves randomly in

any direction and has no definite path and can’t be handled easily. It undergoes

changes both in magnitude and direction.”

2.4.5 Steady flow[48]

“The flow that does not changes with respect to time is called steady flow. Math-

ematically, it can be written as

dη∗

dt
= 0,

where η∗ is fluid property.”

2.4.6 Unsteady flow[48]

“The flow that continuously changes with respect to time, is expressed as unsteady

flow.” Mathematically, it can be written as

dη∗

dt
6= 0,

2.4.7 Uniform flow[48]

“The flow defined in which velocity and hydrodynamic parameters does not changes

from point to point at any given instant, having same direction as well as mag-

nitude during the fluid motion called as uniform flow. Mathematically, it can be
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expressed as

∂V

∂s
= 0,

where V is the velocity and s is the displacement.”

2.4.8 Non-uniform flow[48]

“In non-uniform flow, the velocity and hydrodynamic parameters changes from

one point to another point and the velocity is not same at every point of the fluid

at an instant. Mathematically, it is written as

∂V

∂s
6= 0,

where V is the velocity and s is the displacement in direction.”

2.5 Fundamental Equations of Flow

2.5.1 Continuity Equation[53]

“The conservation of mass of fluid entering and leaving the control volume, the

resulting mass balance is called the equation of continuity. This equation reflects

the fact that mass is conserved.

Mathematically it can be write as

∂ρ

∂t
+∇. (ρV) = 0. (2.1)

For steady case rate of time will be constant, so continuity equation becomes

∇. (ρV) = 0. (2.2)
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In the case of incompressible flow, density does not variate so continuity equation

can be re-write as,

∇. V = 0. (2.3)

Where, V is velocity of fluid.”

2.5.2 Equation of Momentum[53]

“For any fluid the momentum equation is

∂

∂t
(ρV) +∇.[(ρV)V]−∇.T− ρg = 0. (2.4)

Since T = −pI + τ , the momentum equation takes the form

ρ

(
∂V

∂t
+ V.∇V

)
= ∇.(−pI + τ) + ρg. (2.5)

Equation (2.4) is a vector equation and can be decomposed further into three scalar

components by taking the scalar product with the basis vectors of an appropriate

orthogonal coordinate system. By setting g = g∇z, where z is the distance from

an arbitrary reference elevation in the direction of gravity, Equation (2.4) can also

be expressed as

ρ
DV

Dt
= ρ

(
∂V

∂t
+ V.∇V

)
= ∇.(−pI + τ) + ρ(g∇z). (2.6)

Where D
Dt

is the substantial derivative. The momentum equation then states that

the acceleration of a particle following the motion is the result of a net force,

expressed by the gradient of pressure, viscous and gravity forces.”

2.5.3 Law of Conservation of Energy[53]

“Conservation of thermal energy is expressed by

ρ

[
∂U

∂t
+ V.∇U

]
= [τ : ∇V + p∇.V] +∇(k∇T)±Hr, (2.7)
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where U is the internal energy per unit mass, and Hr is the heat of reaction. By

involving the definition of the internal energy,

ρCv

[
∂T

∂t
+ V.∇T

]
= [τ : ∇V + p∇.V] +∇(k∇T)±Hr. (2.8)

For heat conduction in solids, i.e, when V = 0, ∇V = 0 and Cv = C, the resulting

equation is

ρC
∂T

∂t
= ∇(k∇t)±Hr.” (2.9)

2.6 Dimensionless Parameters

2.6.1 Reynolds Number(Re)[52]

“It is the ratio of the inertial forces to the viscous forces. Based on their behavior,

the fluid flows are identified as laminar or turbulent flow. Mathematically, it is

expressed as

Re =
ρU2

L

L2

µU
,

Re =
LU

ν
, (2.10)

where U denotes the free stream velocity, L is the characteristics length and ν

stands for kinematic viscosity.”

2.6.2 Prandtl Number(Pr)[53]

“The ratio of kinematic diffusivity to heat the diffusivity is said to be Prandtl

number. It is denoted by Pr Mathematically, it can be written as

Pr =
ν

α
,

Pr =
µcp
ρk

, (2.11)



Chapter 2 15

where µ and α denote the momentum diffusivity or kinetic diffusivity and thermal

diffusivity respectively. Here cp denotes the specific heat and k stands for thermal

conductivity.”

2.6.3 Nusselt Number(Nu)[52]

“It is the relationship between the convective to the conductive heat transfer

through the boundary of the surface. It is a dimensionless number which was

first introduced by the German mathematician Nusselt.

Mathematically, it is defined as:

Nu =
hL

k
, (2.12)

where h stands for convective heat transfer, L stands for characteristics length and

stands for thermal conductivity.”

2.6.4 Darcy Number(Da)[52]

“The Darcy number Da represents the effect of the permeability of medium ac-

cording to its cross sectional area.

Da =
k

H2
, (2.13)

where k shows the permeability of porus medium and H is the length of prescribed

geometry. It was first introduced by Henry Darcy. It is transformed by the non

dimensionalizing the differential form of Darcy’s law.”

2.6.5 Skin Friction Coefficient(Cf)[54]

“The skin friction coefficient is typically defined as

Cf =
2τw
ρw2
∞
, (2.14)
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where τw is the local wall shear stress, ρ is the fluid density and w∞ is the free

stream velocity (usually taken outside the boundary layer or at the inlet). It

expresses the dynamic friction resistance originating in viscous fluid flow around

a fixed wall.”

2.6.6 Eckert Number(Ec)[54]

“A number with no dimensions used in continuum mechanics. It defines the “re-

lationship between flow’s kinetic energy and boundary layer difference.”

Mathematically it can be written as,

Ec =
V2

CpR2(TH − T0)
, ” (2.15)

“where V is the velocity of the fluid, R is the lower-plate stretching parameter, Cp

is the specfic heat and δT is the original and final temperature variations.”

2.6.7 Rayleigh Number(Ra)[54]

“It is the relationship between the kinematic diffusivity to heat diffusivity mul-

tiplied by the ratio of viscosity forces and buoyancy forces.It is a dimensionless

number introduced by Lord Rayleigh.

It is denoted by Ra and mathematically it can be written as

Ra =
gβ

να
(Th − Tc)L3.” (2.16)

2.7 Solution Methodology

“Consider the second order two point boundary value problem (BVP):

u′′ = f(x, u, u′) (2.17)
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subjected to the boundary conditions:

u(0) = 0 , u(α) = ξ,

where ξ is some known constant. In order to apply the shooting method for the

BVP (2.17), we first convert the equation (2.17) into a system of two first order

ODEs. Using the notation, u = u1, u′ = u′1 = u2, u′′ = u′′1 = u′2 we have

u′1 = u2, (2.18)

u′2 = f(x, u1, u2). (2.19)

The associated boundary conditions reduced as:

u1(0) = 0 , u1(α) = ξ.

By considering u2(0) = η, the first order system of Eqs. (2.18) and (2.19) together

with u1(0) = 0, u2(0) = η is an initial value problem (IVP) and can be solved by

using the Runge-Kutta method of order four (RK4). Then we get both u1 and u2

computed at the decided nodes. If u1(α) is sufficiently close to ξ, then this u1 is an

approximate solution, if not we have to choose another value of ξ and the process

is repeated again. Newton method is used to refine the initial guess. This process

is continued until a satisfactory accuracy is achieved. Its main advantage is its

efficiency and fastness. If the solution is extremely sensitive to the assumed initial

condition, then parallel shooting method is applied (see Na [55] for details).”
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Effects of a Magnetic Field on

Unsteady Squeezing Flow of

Viscous Fluid

The problem of an unsteady squeezing movement of fluid between two parallel

plates are studied under the impact of magnetic field. As the plates move closer

to each other, squeezing movement is perpendicular to the surfaces of the plates.

The governing system of nonlinear PDEs is converted into a model of nonlinear

ODEs by utilizing the transformation of similarities. Apart from it the solution of

ODEs has been acquired by using the shooting technique. At the end of chapter the

numerical solutions of ODEs have been discussed with impact on the skin friction

coefficients, Nusselt number, velocity and temperature. The data is represented

and analyzed with the help of graphs. In this chapter, the review work of Su and

Yin [46] is presented.

3.1 Mathematical Modeling

We considered the problem of the unsteady squeezing movement of a viscous fluid

bounded between two infinite parallel plates that are subject to magnetic field B

18
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as shown in Figure 3.1. The channel’s lower plate is along x-axis and the y-axis

normal to it. The time-dependent magnetic field B = (Bm cos γ,Bm sin γ, 0),

in which Bm denotes B0(1 − αt)−1/2, is applied along the magnetic inclination

angle γ. For a small magnetic Reynolds number the induced magnetic field is

assumed to be negligible. With respect to time t, the distance between the plates

H(t) = l(1 − αt)1/2 change, where the initial distance between the plates is l at

t = 0. When α < 0 as the plates move apart and for α > 0, the two plates are

squeezed, us is the velocity of the lower plate, vH is the velocity of the upper plates,

vc is the lower plate mass flux velocity, TH is the upper plate surface temperature,

T0 denotes the lower plate surface temperature.

Figure 3.1: Geometry of the Physical Model.

The governing PDEs are:
∂u

∂x
+
∂v

∂y
= 0, (3.1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=− 1

ρ

∂p

∂x
+

µ

ρ

(
∂2u

∂x2
+

∂2u

∂y2

)
+
σB2

m

ρ
sin γ(v cos γ − u sin γ), (3.2)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
=− 1

ρ

∂p

∂y
+

µ

ρ

(
∂2v

∂x2
+

∂2v

∂y2

)
+
σB2

m

ρ
cos γ(u sin γ − v cos γ), (3.3)
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∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

k

ρcp

(
∂2T

∂x2
+

∂2T

∂y2

)
+

µ

ρcp

[
2

(
∂u

∂x

)2

+ 2

(
∂v

∂y

)2

+

(
∂u

∂y
+

∂v

∂x

)2
]

+
σB2

m

ρcp
(u sin γ − v cos γ)2.

(3.4)

3.1.1 Dimensional Boundary Conditions

The dimensional form of the BCs is:

u = us =
bx

1− αt
, v = vc = − v0√

1− αt
, T = T0 at y = 0, (3.5)

u = 0, v = vH =
dH

dt
= − αl

2
√

1− αt
, T = TH = T0 +

T0

1− αt
at y = H(t). (3.6)

To transform the modeled equations (3.1)-(3.4) into the dimensionless form, these

are the similarity transformation that defined in [46] has been used:

η =
y

l(1− αt)1/2
, v = vHf(η), u = − xvHf

′(η)

l(1− αt)1/2
, θ(η) =

T − T0

TH − T0

. (3.7)

By using (3.7) into (3.1), the continuity equation is satisfied. Take u and differen-

tiating w.r.t ‘x’,

u = −xvHf
′(η)

H(t)
,

∂u

∂x
=

∂

∂x

(
−xvHf ′(η)

H(t)

)
,

∂u

∂x
= −vHf

′(η)

H(t)
. (3.8)

Similarly differentiating v w.r.t ‘y’,

v = vHf(η),

∂v

∂y
=

∂

∂y
(vHf(η)) ,

= vH f ′(η) η′(y),

∂v

∂y
=
vH f ′(η)

H(t)
. (3.9)
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Using (3.8)-(??) in (3.1) to satisfy continuity equation

∂u

∂x
+
∂v

∂y
= −vHf

′(η)

H(t)
+
vHf

′(η)

H(t)
= 0. (3.10)

Now we include the procedure for the conversion of (3.2) and (3.3) into dimen-

sionless form.

Converting PDEs of momentum equations into ODE to utilize transformation of

similarities, so differentiating (3.2) w.r.t ‘y’ and (3.3) w.r.t ‘x’ and subtracting to

eliminate the pressure gradient we proceed as follows.

∂

∂y

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
− ∂

∂x

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= −1

ρ

∂2p

∂y∂x

+
1

ρ

∂2p

∂x∂y
+ ν

∂

∂y

(
∂2u

∂x2
+

∂2u

∂y2

)
− ν

∂

∂x

(
∂2v

∂x2
+
∂2v

∂y2

)
+
σB2

m

ρ

[
sin γ

∂

∂y
(v cos γ − u sin γ) − cos γ

∂

∂x
(u sin γ − v cos γ)

]
. (3.11)

‘v’ does not depend on x so the derivative of v is zero and second derivative of u

is also zero.

v = vHf(η) ; u = −xvHf
′
(η)

H(t)
,

∂v

∂x
= 0 ;

∂2u

∂x2
= 0.

So we have,

∂

∂y

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= ν

∂3u

∂y3
+

σB2
m

ρ
sin γ cos γ

∂v

∂y
− σB2

m

ρ
sin2 γ

∂u

∂y

− σB2
m

ρ
sin γ cos γ

∂u

∂x
,

∂2u

∂y∂t
+ u

∂2u

∂y∂x
+ v

∂2u

∂y2
= ν

∂3u

∂y3
+
σB2

m

ρ
sin γ cos γ

∂v

∂y
− σB2

m

ρ
sin2 γ

∂u

∂y

− σB2
m

ρ
sin γ cos γ

∂u

∂x
. (3.12)
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Take η and differentiating w.r.t ‘t’,

∂η

∂t
=

∂

∂t

(
y

l (1− αt) 1/2

)
,

∂η

∂t
=

αy

2l(1− αt)3/2
. (3.13)

The derived form of u by using vH becomes

u =
−xvHf ′(η)

l(1− αt)1/2
; vH =

−αl
2
√

1− αt

u =

xαlf ′(η)

2
√

1−αt

l(1− αt)1/2
,

u =
αxf ′(η)

2(1− αt)
.

Take u and differentiating w.r.t ‘t’,

u =
αxf ′(η)

2(1− αt)
,

∂u

∂t
=

∂

∂t

(
αxf ′

2(1− αt)

)
,

=
αxf ′′

2(1− αt)
∂

∂t

(
y

l (1− αt) 1/2

)
+

α x f ′

2

∂

∂t

(
1

1− αt

)
,

=
α2xyf ′′

4l(1− αt)5/2
+

α2xf ′

2(1− αt)2
. (3.14)

Again differentiating w.r.t ‘y’,

∂

∂y

(
∂u

∂t

)
=

∂

∂y

(
α2xyf ′′

4l(1− αt)5/2

)
+

∂

∂y

(
α2xf ′

2(1− αt)2

)
,

∂2u

∂y∂t
=

α2xf ′′

4l(1− αt)5/2
+

α2xyf ′′′

4l(1− αt)5/2

∂

∂y

(
y

l(1− αt)1/2

)
+

α2xf ′′

2(1− αt)2

∂

∂y

(
y

l(1− αt)1/2

)
,

=
α2xf ′′

4l(1− αt)5/2
+

α2xyf ′′′

4l2(1− αt)3
+

α2xf ′′

2l(1− αt)5/2
,

=
α2xyf ′′′

4l2(1− αt)3
+

3α2xf ′′

4l(1− αt)5/2
. (3.15)
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Take u and differentiating w.r.t ‘x’,

u =
αxf ′(η)

2(1− αt)
,

∂u

∂x
=

∂

∂x

(
αx f ′

2 (1− αt)

)
,

∂u

∂x
=

αf ′

2 (1− αt)
. (3.16)

Again differentiating w.r.t ‘y’, we have

∂2u

∂x∂y
=

αf ′′

2(1− αt)

(
∂η

∂y

)
,

∂2u

∂x∂y
=

αf ′′

2(1− αt)

(
1

l(1− αt)1/2

)
,

∂2u

∂x∂y
=

αf ′′

2l(1− αt)3/2
,

u
∂2u

∂x∂y
=

α2xf ′f ′′

4l(1− αt)5/2
. (3.17)

Take u and differentiating w.r.t ‘y’,

u =
αxf ′(η)

2(1− αt)
,

=
∂

∂y

(
αxf ′

2(1− αt)

)
,

=
αxf ′′

2(1− αt)
∂

∂y

(
y

l (1− α t) 1/2

)
,

∂u

∂y
=

αxf ′′

2 l (1− α t) 3/2
. (3.18)

Multiply v on both sides of (3.18), we have

v
∂u

∂y
=

(
−αlf

2 (1− αt) 1/2

)(
αxf ′′

2l(1− αt)3/2

)
,

=
−α2xff ′′

4(1− αt)2
.

Again differentiate w.r.t ‘y’,

v
∂2u

∂y2
=

∂

∂y

(
−α2xff ′′

4(1− αt)2

)
,
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=
−α2x

4(1− αt)2

(
f
∂f ′′

∂y
+ f ′′

∂f

∂y

)
v
∂2u

∂y2
=

−α2x

4(1− αt)2
(ff ′′′η′(y) + f ′′f ′η′(y))

∴

(
η =

y

H( t)
; H(t) = l (1− α t) 1/2

)
v
∂2u

∂y2
=

−α2x

4(1− αt)2

(
ff ′′′

1

l ( 1− α t) 1/2
+ f ′′ f ′

1

l (1− α t) 1/2

)
v
∂2u

∂y2
=

−α2x

4l(1− αt)5/2
(ff ′′′ + f ′f ′′). (3.19)

The derived form of v by using vH ,

v = vHf(η) ; vH =
−αl

2
√

1− αt
,

v =
−αlf(η)

2
√

1− αt
.

Take v and differentiating w.r.t ‘y’,

∂v

∂y
=

∂

∂y

(
−αlf

2(1− αt)1/2

)
,

=
−αlf ′

2(1− αt)1/2

∂

∂y

(
y

l(1− αt)1/2

)
,

=
−αlf ′

2(1− αt)1/2

(
1

l(1− αt)1/2

)
,

∂v

∂y
=
−αf ′

2(1− αt)
. (3.20)

Take (3.18) and again differentiating w.r.t ‘y’,

∂2u

∂y2
=

∂

∂y

(
α x f ′′

2 l (1− αt) 3/2

)
,

=
αxf ′′′

2 l (1− α t) 3/2

∂

∂y

(
y

l(1− αt)1/2

)
,

∂2u

∂y2
=

αxf ′′′

2l2(1− αt)2
.

Again differentiating w.r.t ‘y’,

∂3u

∂y3
=

∂

∂y

(
αxf ′′′

2l2(1− αt)2

)
,
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∂3u

∂y3
=

αxf (iv)

2l2(1− αt)2

∂

∂y

(
y

l(1− αt)1/2

)
,

ν
∂3u

∂y3
=

ανxf (iv)

2l3(1− αt)5/2
. (3.21)

Using (3.15)-(3.21) in (3.12) becomes

α2xyf ′′′

4l2(1− αt)3
+

3α2xf ′′

4l(1− αt)5/2
+

α2xf ′f ′′

2l(1− αt)5/2
− α2x

4l(1− αt)5/2
(ff ′′′ + f ′f ′′)

=
ανxf (iv)

2l3(1− αt)5/2
− σB2

m

ρ
sin γ cos γ

αf ′

2(1− αt)
− σB2

m

ρ
sin2 γ

αxf ′′

2l(1− αt)3/2

− σB2
m

ρ
sin γ cos γ

αf ′

2(1− αt)
,

∴
(
Bm = B0(1− αt)−1/2

)
,

α2xyf ′′′

4l2(1− αt)3
+

3α2xf ′′

4l(1− αt)5/2
+

α2xf ′f ′′

2l(1− αt)5/2
− α2x

4l(1− αt)5/2
(ff ′′′ + f ′f ′′)

=
ανxf (iv)

2l3(1− αt)5/2
− σB2

0(1− αt)−1

ρ
sin γ cos γ

αf ′

2(1− αt)

− σB2
0(1− αt)−1

ρ
sin2 γ

αxf ′′

2l(1− αt)3/2
− σB2

0(1− αt)−1

ρ
sin γ cos γ

αf ′

2(1− αt)
,

α2xyf ′′′

4 l2(1− αt)3
+

3α2xf ′′

4 l (1− α t) 5/2
+

α2x f ′ f ′′

2 l (1− α t) 5/2
− α2x

4 l (1− αt)5/2
(ff ′′′ + f ′f ′′)

=
ανxf (iv)

2l3(1− αt)5/2
− σB2

0

ρ
sin γ cos γ

αf ′

2(1− αt)2
− σB2

0

ρ
sin2 γ

αxf ′′

2l(1− αt)5/2

− σB2
0

ρ
sin γ cos γ

αf ′

2(1− αt)2
. (3.22)

Multiply 2l3(1−αt)5/2
ανx

on both sides, the dimensionless form of (3.12) can be reduced

as:

f (iv) +
l2α

2ν
(ff ′′′ − 3f ′′ − f ′f ′′ − ηf ′′′) − ασl2B2

0

ρν
sin γ(2δf ′ cos γ + f ′′ sin γ) = 0,

f (iv) + S(ff ′′′ − 3f ′′ − f ′f ′′ − ηf ′′′)−M2 sin γ (sin γf ′′ + 2δ cos γf ′) = 0. (3.23)

Now we have to convert PDE of energy equation into ODE to utilize similarity
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transformation, in (3.4) T and v does not depend on x so the derivative of T and

v is equal to zero,

T = θ(η)(TH − T0) + T0,

v = vHf(η),

TH = T0 +
T0

1− αt

∂T

∂t
+ v

∂T

∂y
=

k

ρcp

∂2T

∂y2
+

µ

ρcp

[
2

(
∂u

∂x

)2

+ 2

(
∂v

∂y

)2

+

(
∂u

∂y

)2
]

+
σB2

m

ρcp
(u sin γ − v cos γ)2. (3.24)

Take T and differentiating w.r.t ‘t’,

T = θ(η)

(
T0

1− α t
+ T0

)
,

=
∂

∂t

(
θ(η)

T0

(1− αt)
+ T0

)
,

= θ(η)

(
αT0

(1 − αt) 2

)
+

T0 θ
′(η)

(1 − αt)

∂η

∂t
,

∂T

∂t
=

θ( η ) αT0

(1− αt)2
− θ′(η)T0yH

′(t)

(1− αt)H2(t)
. (3.25)

Similarly differentiating T w.r.t ‘y’,

T = θ( η)

(
T 0

1− αt
+ T0

)
,

∂T

∂y
=

∂

∂y

(
θ( η)

T 0

(1− αt)
+ T0

)
,

=
T0θ

′(η)

(1− αt)
∂η

∂y
,

∂T

∂y
=

T0θ
′(η)

H(t)(1− αt)
, (3.26)

v
∂T

∂y
= (vHf(η))

(
T0θ

′(η)

H(t)(1− αt)

)
,

v
∂T

∂y
=
vHf(η)T0θ

′(η)

H(t)(1− αt)
. (3.27)
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Take (3.26) again differentiating w.r.t ‘y’,

∂2T

∂y2
=

∂

∂y

(
T0θ

′(η)

H(t)(1− αt)

)
,

∂2T

∂y2
=

T0θ
′′(η)

H2(t)(1− αt)
,

k

ρcp

∂2T

∂y2
=

k

ρcp

T0θ
′′(η)

H2(t)(1− αt)
. (3.28)

Using (3.25)-(3.28) in (3.24) becomes,

θ(η)αT0

(1 − αt)2
− θ′(η)T0yH

′(t)

(1− αt)H2(t)
+

vHf(η)T0θ
′(η)

H(t)(1 − αt)
=

k

ρcp

T0θ
′′(η)

H2(t)(1− αt)

+
ν

cp

(
4v2

Hf
′2(η)

H2
+
x2v2

Hf
′′2(η)

H4

)
+
σB2

m

ρcp

(
−xvHf ′(η)

H
sin γ − vHf(η) cos γ

)2

.

Multiplying H2(t)(1−αt)ρcp
kT0

on both sides, the dimensionless form of (3.24) can be

reduced:

θ′′ + SPr(fθ′ − ηθ′ − 2θ) + PrEc
[
f ′′2 + 4δ2f ′2 +M2(f ′2sin2γ+

δ2f 2 cos2 γ + 2δff ′ sin γ cos γ)
]
. (3.29)

Now for converting the associated boundary conditions into the dimensionless

form, the following steps have been taken:

• u = us at y = 0.

−xvHf ′(η)

H(t)
= us at η = 0.

f ′(η) =
usH(t)

−xvH
,

f ′(0) =
usδ

vH
,

f ′(0) = R.

• v =
−v0√
1− αt

at y = 0.

vHf( η ) =
−v0√
1− αt

at η = 0.

f(0) =
−v0

vH
√

1− α t
,
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f(0) =
2v0

αl
,

f(0) = sb.

• T = T0 at y = 0.

θ(η)

(
T0

1− αt

)
+ T0 = T0 at η = 0.

θ(0)

(
T0

1 − α t

)
= 0,

θ(0) = 0.

• u = 0 at y = H(t).

−xvHf ′(η)

H( t )
= 0 at η = 1.

f ′(1) = 0.

• v = vH at y = H(t).

vHf(η) = vH at η = 1.

f(1) = 1.

• T = T0 +
T 0

1 − α t
at y = H(t).

θ(η)

(
T0

1− αt

)
+ T0 = T0 +

T0

1− αt
at η = 1.

θ (1)

(
T 0

1 − α t

)
=

T0

1− αt
,

θ (1) = 1.

The final dimensionless form of the governing model is

f (iv)−S (ηf ′′′+3f ′′+f ′f ′ − ff ′′′) − M2 sin γ (sin γ f ′′+2δ cos γ f ′) = 0. (3.30)

θ ′′ + SPr( f θ′ − ηθ′ − 2θ)+

PrEc
[
f ′′2 + 4δ2f ′2 + M2 (f ′ 2 sin2 γ + δ2 f 2 cos2 γ + 2δf f ′ sin γ cos γ)

]
= 0.

(3.31)
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The associated boundary conditions of (3.5) and (3.6) shown as:

f ′( η) = R , f( η) = Sb , θ( η) = 0, at η = 0, (3.32)

f ′( η) = 0 , f( η) = 1 , θ( η) = 1, at η = 1. (3.33)

Different parameters used in (3.30) and (3.31) are defined as:

S =
αl2

2ν
, Pr =

µCp
k
, Ec =

u2
0

CpR2(TH − T0)
,

M2 =
σB2

0 l
2

ρν
, Sb =

2v0

αl
, R =

usδ

vH
, δ =

H

x
.

 (3.34)

3.2 Physical Quantities

The skin friction (Cf ) and the Nusselt number (Nu) are the main physical quan-

tities, we discussed here.

The skin friction Cf are expressed as:

Cf =
µ(∂u

∂y
)y=H(t)

ρv2
H

Cf =
ν(∂u

∂y
)y=H(t)

v2
H

(3.35)

u =
αxf ′(η)

2(1− αt)
∂u

∂y
=

αxf ′′(η)

2(1− αt)

(
∂η

∂y

)
=

αxf ′′(η)

2(1− αt)

(
1

l(1− αt)1/2

)
∂u

∂y
=

αxf ′′(η)

2l(1− αt)3/2

Cf =
ν
(

αxf ′′(η)

2l(1−αt)3/2

)
(
−αl

2
√

1−αt

)2

= ν

(
αxf ′′(η)

2l(1− αt)3/2

) (
4(1− αt)
α2l2

)
Cf =

2xνf ′′(η)

αl3(1− αt)1/2
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Cf =
2xνf ′′(η)

αl3(1− αt)1/2

(
bx(1− αt)
bx(1− αt)

) (
∵ us =

bx

1− αt

)
=

2bx2νf ′′(η)

αl3(1− αt)3/2

(
(1− αt)
bx

)
=

2bx2νf ′′(η)

αl3(1− αt)3/2

(
1

us

)
=

2bx3f ′′(η)

αl3(1− αt)3/2

(
ν

usx

)
=

2bx3f ′′(η)

αl3(1− αt)3/2

(
1

Rex

)
f ′′(η) =

αl3(1− αt)3/2

2bx3
RexCf at η = 1, (3.36)

where Rex = usx
ν

represents the local Reynolds number.

The Nusselt number Nu at the lower plate surface may be expressed as:

Nu =
l

TH − T0

(
∂T

∂y

)
y=H(t)

(3.37)

Consider T and differetiate w.r.t y,

T =

(
T0θ(η)

1− αt

)
+ T0

∂T

∂y
=

(
T0

1− αt

)
θ′( η)

1

l(1 − α t)1/2

∂T

∂y
=

T0θ
′(η)

l(1− αt)3/2

Nu =
l

TH − T0

(
T0θ

′(η)

l(1− αt)3/2

)
Nu =

1

TH − T0

(
T0θ

′(η)

(1− αt)3/2

)
∵

(
TH − T0 =

T0

1− αt

)
Nu =

(1− αt)
T0

(
T0θ

′(η)

(1− αt)3/2

)
Nu =

θ′(η)

(1− αt)1/2

θ′( η) = Nu
(
( 1 − α t) 1/2

)
θ′( η) = Nu

(
( 1 − α t) 1/2

(bx)1/2
(bx)1/2

)
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θ′(η) = Nu

(
(bx)1/2

(us)1/2

)
∵

(
us =

bx

1− αt

)
θ′(η) = Nu

(
b1/2x

(usx)1/2

)
θ′(η) = Nub1/2x

ν1/2

(usx)1/2

1

ν1/2

θ′(η) =
Nub1/2x

ν1/2

1

(Rex)1/2

θ′(η) =
(ν
b

)−1/2

x(Rex)
−1/2Nu at η = 1, (3.38)

where Rex denotes the local Reynolds number and is define as Rex = usx
ν

.

3.3 Solution Methodology

For the solution of ODEs, (3.30) and (3.31), the shooting method has been used.

The missing ICs f ′′(0), f ′′′(0) and θ′(0) are denoted by χ1, χ2 and χ. For further

refining of the missing conditions, Newton’s method will be used. Furthermore,

the following notations have been used.

⇒ f = f1 , f ′ = f2 , f ′′ = f3 , f ′′′ = f4 , f (iv) = f ′4

∂f1

∂χ1

= f5,
∂f2

∂χ1

= f6,
∂f3

∂χ1

= f7,
∂f4

∂χ1

= f8

∂f1

∂χ2

= f9,
∂f2

∂χ2

= f10,
∂f3

∂χ2

= f11,
∂f4

∂χ2

= f12

⇒ θ = Y1, θ′ = Y2, θ′′ = Y ′2

∂Y1

∂χ
= Y3,

∂Y2

∂χ
= Y4

The above mathematical problem model (3.30) and (3.31), can now be given as

first order ODEs in the following form.

f ′1 = f2 f1(0) = 0.1,

f ′2 = f3 f2(0) = 0.5,

f ′3 = f4 f3(0) = χ1,
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f ′4 = S(ηf4 + 3f3 + f2f3 − f1f4) +M2 sin γ(sin γf3 + 2δ cos γf2) f4(0) = χ2,

f ′5 = f6 f5(0) = 0,

f ′6 = f7 f6(0) = 0,

f ′7 = f8 f7(0) = 1,

f ′8 = S(ηf8 + 3f7 + f2f7 + f3f6 − f1f8 − f4f5)

+M2 sin γ(f7 sin γ + 2δf6 cos γ) f8(0) = 0,

f ′9 = f10 f9(0) = 0,

f ′10 = f11 f10(0) = 0,

f ′11 = f12 f11(0) = 0,

f ′12 = S(ηf12 + 3f11 + f2f11 + f10f3 − f1f12 − f4f9)

+M2 sin γ(f11 sin γ + 2δf10 cos γ) f12(0) = 1,

Y ′1 = Y2 Y1 (0) = 0,

Y ′2 = − PrS(fY2 − ηY2 − 2Y1)− PrEc[f ′′2 + 4δ2f ′2

+M2 (f ′2 sin2 γ + f 2δ2 cos2 γ + 2ff ′δ sin γ cos γ)] Y2 (0) = χ,

Y ′3 = Y4 Y3 (0) = 0,

Y ′4 = − PrS(fY4 − ηY4 − 2Y3) Y4 (0) = 1,

The above IVP is numerically solved by RK4 method. To obtain the approximate

solution, the problem domain was taken as [0 , 1]. In the above system of equations,

the missing conditions χ1, χ2, and χ are to be chosen such that

f1(1 , χ1 , χ2) = 0, f2(1 , χ1 , χ2) = 0, Y1(1 , χ) = 0. (3.39)

Newton’s approach was applied to carry out the following iterative scheme for the

refinement of the missing conditions:

χ (n + 1)
1

χ
(n + 1)

2

 =

χ ( n )
1

χ
( n )

2

−
f5 f9

f6 f10

−1 f ( n )
1

f
( n )

2


(χ

(n)
1 ,χ

(n)
2 ,1)



Chapter 3 33

and

χn+1 = χn −
Y1(1, χ)− 1

Y3(1, χ)
, (3.40)

1. Choice of the guesses χ1 = χ
(0)
1 , χ2 = χ

(0)
2 , and χ = χ(0).

2. Choosing a small positive number ε.

If max{|f1(1, χ1, χ2)− 1|, |f2(1, χ1, χ2) − 0|} < ε, stop the process oth-

erwise go to (3).

3. Calculating χ
(n + 1)

1 and χ
(n + 1)

2 , n = 0, 1, 2, 3... by using Newton scheme.

If max|Y1(1 , χ)− 1| < ε, stop the process otherwise go to (4).

4. Compute χ(n + 1), n = 0, 1, 2, 3... by using Newton scheme.

where ε = 10−10 is the tolerance for the modeled problem.

3.4 Graphical Results

In order to show the squeezing movement more accurately, the computed results

are presented and discussed graphically. Figures 3.2-3.12 shows the variations in

velocity and temperature curves against some of the parameters including squeeze

parameter S, the inclination angle γ, the magnetic parameter M , the lower plate

stretching parameter R, the Eckert number Ec and the parameter for lower plate

suction/injection.

Figure 3.2 and 3.3 indicate the squeeze number effect on velocity and tempera-

ture. Figure 3.2 demonstrates the distribution of fluid velocity close to the lower

or upper end of plates are decreasing due to rising of the squeeze number, but for

the velocity an opposite effect has been observed close to the centre between the

plates. It is noted from Figure 3.3 that rising the values of the squeezing parameter

causes reduction in the temperature. When the plates move close to each other,

the temperature field will be comparatively high.
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Figure 3.4 and 3.5 represent the velocity and temperature of the fluid for various

magnetic parameter values. It has been observed in Figure 3.4 that an increase in

the magnetic parameter causes the fluid velocity to increase at both ends (lower

and upper) of the plates, but the fluid velocity near the center, quite slightly,

shows a noticeable decrease. The fluid in the central regions has larger Lorentz

force than the fluid near the plate. The reason is that the Lorentz force in fluid

motion presents resistance. So excessive Lorentz forces make velocity slow down

close the central region of plates. Figure 3.5 shows that the fluid temperature rises

from the lower to upper plate surface when the magnetic field parameter rises. For

the larger magnetic value, the fluid temperature increases not only near the upper

surface but also in the centre between the plates. Actually, the strong magnetic

field affects the temperature distribution in the regions. Large friction along with

a strong magnetic field generates more heat in fluids.

Velocity and temperature profiles variations were shown through Figure 3.6 and

3.7 by rising value of the magnetic angle. The angle of magnetic inclination ranges

between 0 and π/2. Similar profiles behaviors of velocity and temperature were

obtained from both figures when compared to the corresponding profiles of differ-

ent magnetic parameter values. The angle of magnetic field inclination γ effects

on both the fluid velocity and the temperature are similar to those of the magnetic

parameter. Therefore, the transfer of fluid in the squeezing movement in practi-

cal applications related to momentum and heat control, the affects generated by

changing the strength of the magnetic field can also be obtained by modifying the

angle of magnetic field inclination.

Figure 3.8 and 3.9 show the affect of stretching parameter of the lower-plate on

the velocity and temperature. In Figure 3.8 the fluid velocity increases close to the

lower plate as compared to the fluid velocity close to the upper plate. Furthermore,

as the stretching parameter on the lower surface rises slowly, the maximum value

of velocity can be seen in the surface of lower plate. Figure 3.9 reflects that when

we rise the stretching parameter of the lower plate, the fluid temperature above
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the lower plate decreases and increases thereafter, when we take the stretching

parameter R > 1.5 the fluid temperature close to the upper plate at first increases

and then steadily decreases.

Figure 3.10 and 3.11 represent the effects of lower-plate suction/injection param-

eter on the fluid velocity and temperature profiles. Figure 3.10 indicates a decline

in velocity for the lower plate suction/injection parameter. In fact, as the lower

plate stretches for greater suction across the lower plate, the maximum fluid veloc-

ity does not show between the centre of the plates, and subsequently fluid velocity

reduces from the lower to upper surface of the plate. In order to increase the

suction/injection parameter, the temperature profiles decrease. In particular, it

was noted that as the suction/injection parameter Sb reduces, the maximum fluid

temperature does not occur on the upper surface of the plate but in the centre

region between the two plates.

The temperature for different values of Eckert number was shown in Figure 3.12.

A clear temperature rise is observed to increase the values of Eckert number. This

increase in the thermal field is evident because Eckert has directly affects on the

process of heat dissipation, which in turn increases the temperature field between

the plates. Figure 3.12 also indicates that the maximum fluid temperature occurs

in the centre between the two plates for larger Eckert number, whereas it tends to

be smaller in the upper plate.

Figure 3.13 and 3.14 demonstrate the effects of the squeeze parameter and mag-

netic angle on the coefficient of skin friction and the Nusselt number, where the

magnetic inclination angle ranges among 00 to 900. The absolute value of skin

friction and Nusselt number may be noticed as a decreasing function of the angle

of magnetic inclination γ. In addition, for the increment of squeeze parameter and

the angle of magnetic inclination are fixed, then the Nusselt number increases and

skin friction coefficient decreases.
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Figure 3.2: Effect of S on the f ′.
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Figure 3.3: Effect of S on the θ(η).
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Figure 3.4: Effect of M on the f ′.
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Figure 3.5: Effect of M on the θ(η).
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Figure 3.6: Effect of γ on the f ′.
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Figure 3.7: Effect of γ on the θ(η).
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Figure 3.8: Effect of R on the f ′.
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Figure 3.9: Effect of R on the θ(η).
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Figure 3.10: Effect of Sb on the f ′.
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Figure 3.12: Effect of Ec on the f ′.
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3.5 Summary

The analysis showed the affects of a magnetic field on unsteady two-dimensional

squeezing movement of viscous fluid bounded between two infinite parallel plates.

Main points have been presented below:

• Squeeze parameter and temperature of the fluid are inversely proportional to

each other. The increment in the squeeze parameter allows fluid temperature

to decrease.

• Increase in temperature with increasing magnetic parameter, inclination an-

gle of magnetic field or the Eckert number.

• The fluid having the maximum temperature can be seen in the centre be-

tween the plates for smaller squeezing parameter or larger magnetic param-

eter.

• The effects on the velocities and temperature generated by changing the

strength of the magnetic field can also be obtained by modifying the magnetic

field inclination angle γ.

• Increasing the stretching parameter results in an increase in velocity and

fluid temperature near the lower plate where there is an opposite pattern

seen near the upper plate.



Chapter 4

Effects of a Magnetic Field on

Unsteady Squeezing Flow in a

Porous Medium

This chapter contains the extension of [46], modeling and investigating an unsteady

squeezing movement of viscous fluid between two infinite parallel plates that passes

in a porous medium with the effect of radiative heat flux model. Problematic ap-

plications are used in hydraulic machinery and equipment, electric motors, food

processing, and engines for automobiles. The governing system of nonlinear PDEs

is converted into a model of nonlinear ODEs by utilizing the transformation of

similarities. Numerical results are obtained for the set of nonlinear ODEs by uti-

lizing shooting technique together with Runge-Kutta method of order four (RK4).

Finally, the results are presented through the graphs for different parameters.

4.1 Mathematical Modeling

We considered the problem of an unsteady two-dimensional squeezing movement

between infinite parallel plates that are subject to an inclined magnetic field B as

shown in Figure 3.1. The both plates are located at H(t) = l
√

1 − α t. When

44
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α < 0 as the plates move apart and for α > 0, the two plates are squeezed. There

is also consideration of the effect of nonlinear thermal radiation.

The governing PDEs are given by:

∂u

∂x
+
∂v

∂y
= 0, (4.1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= − 1

ρ

∂p

∂x
+

µ

ρ

(
∂2u

∂x2
+

∂2u

∂y2

)
+
σB2

m

ρ
sin γ(v cos γ − u sin γ)− µ

ρ

( u
k∗

)
, (4.2)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= − 1

ρ

∂p

∂y
+

µ

ρ

(
∂2v

∂x2
+

∂2v

∂y2

)
+
σB2

m

ρ
cos γ( u sin γ − v cos γ)− µ

ρ

( v
k∗

)
, (4.3)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

k

ρcp

(
∂2T

∂x2
+

∂2T

∂y2

)
+

µ

ρcp

[
2

(
∂u

∂x

)2

+ 2

(
∂v

∂y

)2

+

(
∂u

∂y
+

∂v

∂x

)2
]

+
σB2

m

ρcp
(u sin γ − v cos γ)2 − 1

ρcp

∂qr
∂y

. (4.4)

4.1.1 Dimensional Boundary Conditions

The dimensional form of the BCs is:

u = us =
bx

1− αt
, v = vc = − v0√

1− αt
, T = T0 at y = 0, (4.5)

u = 0, v = vH =
dH

dt
= − αl

2
√

1− αt
, T = TH = T0 +

T0

1− αt
at y = H(t). (4.6)
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The flux of radiative heat is given by:

qr = −4 σ∗

3 k∗
∂T 4

∂y
, (4.7)

where σ∗ is the Stefan-Boltzmann constant and k∗ is the coefficient of mean ab-

sorption. By applying Taylor series for temperature of free stream and ignoring

higher-order values, we get

T 4 = 4T T 3
H − 3T 4

H . (4.8)

Substituting (4.8) in (4.7), becomes

qr = −16σ∗T 3
H

3k∗
∂T

∂y
, (4.9)

Substituting (4.9) in (4.4), we get final form of energy equation is:

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

k

ρcp

(
∂2T

∂x2
+

∂2T

∂y2

)
+

µ

ρcp

[
2

(
∂u

∂x

) 2

+ 2

(
∂v

∂y

) 2

+

(
∂u

∂y
+
∂v

∂x

)2
]

+
σB2

m

ρcp
(u sin γ − v cos γ)2 +

16σ∗T 3
H

3k∗ρcp

∂2T

∂y2
.

(4.10)

For the conversion of the modeled equations (4.1), (4.2), (4.3) and (4.10) into the

dimensionless form, the given below is the similarity transformation that defined

in [46] has been used:

η =
y

l(1− αt)1/2
, v = vHf(η), u = − xvHf

′(η)

l(1− αt)1/2
, θ(η) =

T − T0

TH − T0

. (4.11)

The detailed procedure for the conversion of continuity equation (4.1) has been

discussed in Chapter 3.

Now we include the procedure for the conversion of (4.2) and (4.3) into dimen-

sionless form.
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Converting PDEs of momentum equations into ODE to utilize transformation of

similarities, so differentiating (4.2) w.r.t ‘y′ and (4.3) w.r.t ‘x′ and subtracting

both eqs to eliminate the pressure gradient we proceed as follows.

∂

∂y

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
− ∂

∂x

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= −1

ρ

∂2p

∂y ∂x

+
1

ρ

∂2p

∂x ∂y
+ ν

∂

∂y

(
∂2u

∂x2
+

∂2u

∂y2

)
− ν ∂

∂x

(
∂2v

∂x2
+

∂2v

∂y2

)
+
σB2

m

ρ

[
sin γ

∂

∂y
(v cos γ − u sin γ)− cos γ

∂

∂x
(u sin γ − v cos γ)

]
− ν

k∗
∂u

∂y
+

ν

k∗
∂v

∂x
. (4.12)

‘v’ does not depend on x so the derivative of v is zero and second derivative of u

is also zero.

v = vHf(η) ; u = −xvHf
′(η)

H(t)
,

∂v

∂x
= 0 ;

∂2u

∂x2
= 0.

So we have,

∂

∂y

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= ν

∂3u

∂y3
+
σB2

m

ρ
sin γ cos γ

∂v

∂y
− σB2

m

ρ
sin2 γ

∂u

∂y

− σB2
m

ρ
sin γ cos γ

∂u

∂x
− ν

k∗
∂u

∂y
,

∂2u

∂y∂t
+ u

∂2u

∂y∂x
+ v

∂2u

∂y2
= ν

∂3u

∂y3
+
σB2

m

ρ
sin γ cos γ

∂v

∂y
− σB2

m

ρ
sin2 γ

∂u

∂y

− σB2
m

ρ
sin γ cos γ

∂u

∂x
− ν

k∗
∂u

∂y
. (4.13)
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The derivatives of above mentioned equation have been already calculated in Chap-

ter 3.

α2xyf ′′′

4l2(1− αt)3
+

3α2xf ′′

4l(1− αt)5/2
+

α2xf ′f ′′

2l(1− αt)5/2
− α2x

4l(1− αt)5/2
(ff ′′′ + f ′f ′′)

=
ανxf (iv)

2l3(1− αt)5/2
− σB2

0

ρ
sin γ cos γ

αf ′

2(1− αt)2
− σB2

0

ρ
sin2 γ

αxf ′′

2l(1− αt)5/2

− σB2
0

ρ
sin γ cos γ

αf ′

2(1− αt)2
− ν

k∗
αxf ′′

2l(1− αt)3/2
. (4.14)

Multiply 2l3(1−αt)5/2
ανx

on both sides, the dimensionless form of (4.14) can be reduced:

f (iv) +
l2α

2ν
(ff ′′′ − 3f ′′ − f ′f ′′ − ηf ′′′)− ασl2B2

0

ρν
sin γ (2δf ′ cos γ + f ′′ sin γ)

− H2

k∗
f ′′ = 0,

f (iv) + S(ff ′′′ − 3f ′′ − f ′f ′′ − ηf ′′′)−M2 sin γ (sin γf ′′ + 2δ cos γf ′)

− 1

Da
f ′′ = 0. (4.15)

Now we have to convert energy equation into ODE to utilize similarity transfor-

mation, in (4.10) T and v does not depend on x so the derivative of T and v is

equal to zero,

T = θ(η)(TH − T0) + T0 ; v = vHf(η) ; TH = T0 +
T0

1− αt
∂T

∂x
= 0 ;

∂v

∂x
= 0.

∂T

∂t
+ v

∂T

∂y
=

k

ρcp

∂2T

∂y2
+

µ

ρcp

[
2

(
∂u

∂x

) 2

+ 2

(
∂v

∂y

) 2

+

(
∂u

∂y

) 2
]

+
σB2

m

ρcp
(u sin γ − v cos γ)2 +

16σ∗T 3
H

3k∗ρcp

∂2T

∂y2
. (4.16)
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The derivatives of above mentioned equation have been already calculated in Chap-

ter 3.

θ(η)αT0

(1− αt)2
− θ′(η)T0yH

′(t)

(1− αt)H2(t)
+
vHf(η)T0θ

′(η)

H(t)(1− αt)
=

k

ρcp

T0θ
′′(η)

H2(t)(1− αt)

+
ν

cp

(
4v2

Hf
′2(η)

H2
+
x2v2

Hf
′′2(η)

H4

)
+
σB2

m

ρcp

(
−xvHf ′(η)

H
sin γ − vHf(η) cos γ

)2

+
16σ∗T 3

H

3k∗ρcp

T0θ
′′(η)

H2(t)(1− αt)
. (4.17)

Multiplying H2(t)(1−αt)ρcp
kT0

on both sides, the dimensionless form of (4.10) can be

reduced:

θ′′ + SPr(fθ′ − ηθ′ − 2θ) + PrEc[f ′′2 + 4δ2f ′2 +M2(f ′2sin2γ+

δ2f 2 cos2 γ + 2δff ′ sin γ cos γ)] +Rdθ′′ = 0.

(1 +Rd)θ′′ + SPr(fθ′ − ηθ′ − 2θ) + PrEc[f ′′2 + 4δ2f ′2 +M2(f ′2sin2γ+

δ2f 2 cos2 γ + 2δff ′ sin γ cos γ )] = 0. (4.18)

The final dimensionless form of the governing model is

f (iv) + S (ff ′′′ − 3f ′′ − f ′f ′′ − ηf ′′′)−M2 sin γ (sin γ f ′′ + 2δ cos γ f ′)

− 1

Da
f ′′ = 0. (4.19)

(1 +Rd)θ′′ + SPr(fθ′ − ηθ′ − 2θ) + PrEc[f ′′2 + 4δ2f ′2 +M2(f ′2sin2γ+

δ2f 2 cos2 γ + 2δff ′ sin γ cos γ)] = 0. (4.20)

The associated boundary conditions of (4.5) and (4.6) shown as:

f ′( η) = R , f( η) = Sb , θ( η) = 0, at η = 0, (4.21)

f ′( η) = 0 , f( η) = 1 , θ( η) = 1, at η = 1. (4.22)
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Different parameters used in (4.19) and (4.20) are defined as follow:

S =
αl2

2ν
, Pr =

µCp
k
, Ec =

u2
0

CpR2(TH − T0)
, Da =

k∗

H2
,

M2 =
σB2

0 l
2

ρν
, Sb =

2v0

αl
, R =

usδ

vH
, δ =

H

x
, Rd =

16σ∗T 3
H

3k∗k
.

 (4.23)

4.2 Physical Quantities

The quantities of practical interest in this study are the Nusselt number (Nu) and

the skin friction coefficient (Cf ), respectively.

The skin friction coefficient Cf have been already derived in Chapter 3.

The Nusselt number coefficient Nu is characterized by:

Nu =
l

k(TH − T0)

(
−k∂T

∂y y=H(t)

+ qr

)
, (4.24)

T = θ(η)

(
T 0

1− α t

)
+ T0

∂T

∂y
=

(
T0

1− αt

)
θ′(η)

1

l(1− αt)1/2

∂T

∂y
=

T0θ
′(η)

l(1− αt)3/2

Nu =
l

k(TH − T0)

(
−k T0θ

′(η)

l(1− αt)3/2
− 16σ∗T 3

H

3k∗
∂T

∂y

)
Nu =

l

k(TH − T0)

(
−k T0θ

′(η)

l(1− αt)3/2
− 16σ∗T 3

H

3k∗
T0θ

′(η)

l(1− αt)3/2

)
Nu = − l

k(TH − T0)

kT0θ
′(η)

l(1− αt)3/2

(
1 +

16σ∗T 3
H

3k∗k

)
Nu = − 1

TH − T0

(
T0θ

′(η)

(1− αt)3/2

)(
1 +

16σ∗T 3
H

3k∗k

)
∵

(
TH − T0 =

T0

1− αt

)
Nu = −(1− αt)

T0

(
T0θ

′(η)

(1− αt)3/2

)(
1 +

16σ∗T 3
H

3k∗k

)
Nu = − θ′( η )

( 1 − α t) 1/2
(1 +Rd)

−(1 +Rd)θ′( η ) = Nu
(
(1− αt)1/2

)
−(1 +Rd)θ′(η) = Nu

(
(1− αt)1/2

(bx) 1/2
(bx)1/2

)
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−(1 +Rd)θ′(η) = Nu

(
(bx) 1/2

(us) 1/2

)
∵

(
us =

bx

1− αt

)
−(1 +Rd)θ′(η) = Nu

(
b1/2x

(usx)1/2

)
−(1 +Rd)θ′(η) = Nub1/2x

ν1/2

(usx)1/2

1

ν1/2

−(1 +Rd)θ′(η) =
Nub1/2x

ν1/2

1

(Rex)1/2

−(1 +Rd)θ′(η) =
(ν
b

)−1/2

x(Rex)
−1/2Nu at η = 1, (4.25)

where Rex = usx
ν

represent the local Reynolds number.

4.3 Numerical Solution

For the solution of ODEs, (4.19) and (4.20), the shooting method has been used.

The missing ICs f ′′(0), f ′′′(0) and θ′(0) are denoted by χ1, χ2 and χ. For further

refining of the missing conditions, Newton’s method will be used. Furthermore,

the following notations have been used.

⇒ f = f1 , f ′ = f2 , f ′′ = f3 , f ′′′ = f4 , f (iv) = f ′4

∂f1

∂χ1

= f5,
∂f2

∂χ1

= f6,
∂f3

∂χ1

= f7,
∂f4

∂χ1

= f8

∂f1

∂χ2

= f9,
∂f2

∂χ2

= f10,
∂f3

∂χ2

= f11,
∂f4

∂χ2

= f12.

⇒ θ = Y1, θ
′
= Y2, θ

′′
= Y

′

2

∂Y1

∂χ
= Y3,

∂Y2

∂χ
= Y4.

The above mathematical problem model (4.19) and (4.20), can now be given as

first order ODEs in the following form.

f
′

1 = f2 f1 (0) = 0.1,

f
′

2 = f3 f2 (0) = 0.5,

f
′

3 = f4 f3 (0) = χ1,
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f
′

4 = S(ηf4 + 3f3 + f2f3 − f1f4) +M2 sin γ(sin γf3 + 2δ cos γf2)

+
1

Da
f3 f4 (0) = χ2,

f
′

5 = f6 f5 (0) = 0,

f
′

6 = f7 f6 (0) = 0,

f
′

7 = f8 f7 (0) = 1,

f
′

8 = S(ηf8 + 3f7 + f2f7 + f3f6 − f1f8 − f4f5)

+M2 sin γ ( f7 sin γ + 2δ f6 cos γ) +
1

Da
f7 f8 (0) = 0,

f
′

9 = f10 f9 (0) = 0,

f
′

10 = f11 f10 (0) = 0,

f
′

11 = f12 f11 (0) = 0,

f
′

12 = S(ηf12 + 3f11 + f2f11 + f10f3 − f1f12 − f4f9)

+M2 sin γ ( f11 sin γ + 2δ f10 cos γ) +
1

Da
f11 f12 (0) = 1,

Y
′

1 = Y2 Y1 (0) = 0,

Y
′

2 =
1

(1 +Rd)
[−PrS(fY2 − ηY2 − 2Y1)− PrEc[f ′′2 + 4δ2f

′2

+M2 (f
′2 sin2 γ + f 2δ2 cos2 γ + 2ff

′
δ sin γ cos γ)]] Y2 (0) = χ,

Y
′

3 = Y4 Y3 (0) = 0,

Y
′

4 =
1

(1 +Rd)
[−PrS(fY4 − ηY4 − 2Y3)] Y4 (0) = 1,

The above IVP is numerically solved by RK4 method. To obtain the approximate

solution, the problem domain was taken as [0 , 1]. In the above system of equations,

the missing conditions χ1, χ2, and χ are to be chosen such that

f1(1 , χ1 , χ2) = 0, f2(1 , χ1 , χ2) = 0, Y1(1 , χ) = 0 (4.26)

Newton’s approach was applied to carry out the following iterative scheme for the

refinement of the missing conditions:

χ(n + 1)
1

χ
(n + 1)
2

 =

χ( n )
1

χ
( n )
2

−
f5 f9

f6 f10

−1 f ( n )
1

f
( n )

2


(χ

(n)
1 ,χ

(n)
2 ,1)



Chapter 4 53

and

χn+1 = χn −
Y1(1, χ)− 1

Y3(1, χ)
, (4.27)

1. Choice of the guesses χ1 = χ
(0)
1 , χ2 = χ

(0)
2 , and χ = χ(0).

2. Choosing a small positive number ε.

If max{|f1(1, χ1, χ2)− 1|, |f2(1, χ1, χ2) − 0|} < ε, stop the process oth-

erwise go to (3).

3. Calculating χ
(n + 1)

1 and χ
(n + 1)

2 , n = 0, 1, 2, 3... by using Newton scheme.

If max|Y1(1, χ)− 1| < ε, stop the process otherwise go to (4).

4. Compute χ (n + 1), n = 0, 1, 2, 3... by using Newton scheme.

where ε = 10−10 is the tolerance for the modeled problem.

4.4 Graphical Results

In order to show the squeezing movement more accurately, the computed results

are presented and discussed graphically. Figures 4.1-4.14 shows the variations in

velocity and temperature curves against some of the parameters including squeeze

parameter S, the angle of magnetic inclination γ, the magnetic parameter M , the

lower plate stretching parameter, Eckert number Ec, the lower plate suction/in-

jection parameter, Da is the darcy number and Rd is the radiation parameter.

Figure 4.1 and 4.2 indicate the squeeze number effect on velocity and temperature.

Figure 4.1 demonstrates the distribution of fluid velocity in regions near the lower

or upper end of plates are decreasing due to rising of the squeeze number, but for

the velocity an opposite effect has been observed close to the centre between the

plates. It is noted from Figure 4.2 that increasing value of the squeezing number

causes reduction in the temperature. When the plates move close to each other,
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the temperature field will be comparatively high.

Figure 4.3 and 4.4 represent the fluid velocity and temperature for various values

of the magnetic number. It has been observed in Figure 4.3 that an increase in the

magnetic parameter causes the fluid velocity to increase at both ends (lower and

upper) of the plates, but the fluid velocity near the center, quite slightly, shows

a noticeable decrease. The fluid in the central regions has larger Lorentz force

than the fluid near the plate. The reason is that the Lorentz force in fluid motion

presents resistance. So excessive Lorentz forces make velocity slow down close the

central region of plates. Figure 4.4 shows that the fluid temperature rises from the

lower plate to the upper plate surface when the magnetic field parameter rises. For

the larger magnetic value, the fluid temperature increases not only near the upper

surface but also in the centre between the plates. Actually, the strong magnetic

field affects the temperature distribution in the regions. Large friction along with

a strong magnetic field generates more heat in fluids.

Velocity and temperature profiles variations were shown through Figures 4.5 and

4.6 by rising value of the magnetic angle. The angle of magnetic inclination ranges

between 0 and π/2. Similar profiles behaviors of velocity and temperature were

obtained from both figures when compared to the corresponding profiles of differ-

ent magnetic parameter values. The angle of magnetic field inclination γ effects

on both the fluid velocity and the temperature are similar to those of the magnetic

parameter. Therefore, the transfer of fluid in the squeezing movement in practi-

cal applications related to momentum and heat control, the affects generated by

changing the strength of the magnetic field can also be obtained by modifying the

angle of magnetic field inclination.

Figures 4.7 and 4.8 show the impact of stretching parameter of the lower plate on

the velocity and temperature. In Figure 4.7 the fluid velocity increases close to the

lower plate as compared to the fluid velocity close to the upper plate. Furthermore,
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as the stretching parameter on the lower surface rises slowly, the maximum value

of velocity can be seen in the surface of lower plate. Figure 4.8 reflects that when

we rise the stretching parameter of the lower plate, the fluid temperature above

the lower plate decreases and increases thereafter, when we take the stretching

parameter R > 1.5 the fluid temperature close to the upper plate at first increases

and then steadily decreases.

Figure 4.9 and 4.10 represent the effects of lower-plate suction/injection param-

eter on the fluid velocity and temperature profiles. Figure 4.9 indicates a decline

in velocity for the lower plate suction/injection parameter. In addition, as the

lower plate stretches for greater suction across the lower plate, the maximum fluid

velocity does not show in the centre between the plates, and subsequently fluid

velocity reduces from the lower to upper surface of the plate. In order to increase

the suction/injection parameter, the temperature profiles decrease. In particular,

it was noted that as the suction/injection parameter Sb reduces, the maximum

fluid temperature does not occur on the upper surface of the plate but in the

centre between the two plates.

The temperature for different values of Eckert number was shown in Figure 4.11.

A clear temperature rise is observed to increase the values of Eckert number. This

increase in the thermal field is evident because Eckert has directly affects on the

process of heat dissipation, which in turn increases the temperature field between

the plates. Figure 4.11 also indicates that the maximum fluid temperature occurs

in the centre between the two plates for larger Eckert number, whereas it tends to

be smaller in the upper plate.

Figure 4.12 shows the characteristics of the velocity profile corresponding to the

inverse Darcy number. It indicates that an increase in the Darcy number causes

the fluid velocity to decrease at both ends (lower and upper) of the plates, but

the fluid velocity near the center shows a noticeable increase. Higher values of
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the inverse Darcy number lead to a greater resistance to flow. It has been show

in Figure 4.13 that the fluid temperature rises from lower surface of the plate to

the upper surface of the plate when the Darcy number is small. For the larger

Darcy number, the fluid temperature rise not only on the above surface but also

on centre between two plates.

Figure 4.14 shows the radiation parameter influence on the temperature profile

distribution. It is observed that the temperature profile decreases substantially

by increasing the radiation parameter. This is because the increasing radiation

parameter values contribute to a reduction in the thickness of the boundary layer

and to an increase in the heat transfer rate with chemical impact on the melting

surface.

Figures 4.15 and 4.16 demonstrate the effects of the squeeze parameter and mag-

netic angle on the coefficient of skin friction and the Nusselt number, where the

magnetic inclination angle ranges among 00 to 900. The absolute value of skin

friction and Nusselt number may be noticed as a decreasing function of the angle

of magnetic inclination γ. In addition, for the increment of squeeze parameter and

the angle of magnetic inclination are fixed, then the Nusselt number increases and

skin friction coefficient decreases.
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Figure 4.1: Effect of S on the f ′.
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Conclusion

Summary of this research work represents the analysis of squeezing movement of

viscous fluid past between two infinite parallel plates considered along stretching

surface in a porous medium with the influence of magnetic field. By utilizing simi-

larity transformation we reduced the set of nonlinear PDEs into a set of nonlinear

ODEs and then solved numerically. Numerical results are obtained for the set of

nonlinear ODEs by using the well known shooting technique with Runge-Kutta

method of order four (RK4). Significance of the effect of different physical param-

eters under discussion on the dimensionless velocity and temperature are describe

graphically. The skin friction and the Nusselt number for different value of the

distinctive governing parameters are also presented graphically. After a detailed

examination, we arrived at the following conclusion.

• Increasing the value of Squeeze parameter (S), the velocity close to the lower

or upper end of plates is increasing, but for the velocity profile decreasing

between the centre of the plates and the temperature profile tends to de-

crease.

• The magnetic field (M) has a direct relation with the temperature profile

and an inverse with the velocity profile.

• Increasing the angle of magnetic inclination (γ), the velocity close to the

lower or upper end of plates is decreasing, but for the velocity profile an

65
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opposite effect has been observed close to the centre between the plates and

the temperature profile tends to increase.

• The lower plate suction/injection parameter (Sb) has an inverse relation with

the velocity and temperature profile.

• Increase value of the Eckert number (Ec), the temperature profile tends to

increase.

• Increase in the Darcy number (Da) causes the fluid velocity to decrease at

both ends (lower and upper) of the plates, but the fluid velocity near the

center shows a noticeable increase and the temperature profile begins to

increase.

• Increase value of the thermal radiation (Rd), the temperature profile begins

to decline.

• For the increment of Squeeze parameter (S) and the angle of magnetic in-

clination (γ), the skin friction (Cf ) decreases and the Nusselt number (Nu)

increases.
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